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ABSTRACT

In this paper, we present a user study of a new collabora-
tive communication method between a user and remotely-
located robot performing an exploration task. In the stud-
ied scenario, our user possesses scientific expertise but not
necessarily detailed knowledge of the robot’s capabilities,
resulting in very little common ground between the user
and robot. Because the robot is not available during mis-
sion planning, we introduce a robot proxy to build common
ground with the user. Our robot proxy has the ability to
provide feedback to the user about the user’s plans before
the plans are executed. Our study demonstrated that the
use of the robot proxy resulted in improved performance
and efficiency on an exploration task, more accurate mental
models of the robot’s capabilities, a stronger perception of
effectiveness at the task, and stronger feelings of collabora-
tion with the robotic system.

Categories and Subject Descriptors

H.1.2 [Models and Principles]: User/Machine Systems—
Human factors; H.5.2 [Information Interfaces and Pre-
sentation]: User Interfaces— Fvaluation/methodology; 1.2.9
[Computing Methodologies|: Artificial Intelligence—
Robotics

General Terms

Experimentation, Human Factors

Keywords

human-robot interaction, exploration robotics, common ground,

robot proxy

1. INTRODUCTION

In this work, we focus on improving human-robot inter-
action within the domain of exploration robotics. We define
robotic exploration tasks broadly as those in which a robot
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co-investigates an unknown environment with a remote hu-
man partner. Exploration is an important domain of study
because of its applicability to a wide variety of problems,
which range from searching for signs of life on other planets
to investigating debris after a building collapse (e.g. [18,
2]). In particular, we are interested in exploration which
involves the deployment of autonomous robots that work in
complex, real-world settings. In these situations, our users
are not likely to be experts in robotics, and they may pos-
sess inaccurate mental models of robotic technologies. At
the same time, these users often possess sophisticated do-
main knowledge which the robot does not. In order to facil-
itate successful exploration, we are interested in promoting
shared understanding between users and robots. That is,
we wish to increase users’ understanding of robots and fos-
ter accurate mental models, and, at the same time, enhance
robots’ understandings of users and their goals in order to
drive robots’ decision-making processes.

1.1 Collaboration Models for Exploration
Robotics

Current collaboration model. Current exploration
robotics systems follow a communication model similar to
the encoder-decoder model of information processing [14].
The user possesses goals which he/she would like to ac-
complish and uses an interface to encode those goals into
machine-readable actions. These actions are sent to the
robot, which uses a planner to decode and schedule the nec-
essary low-level commands and an executive process to di-
rect the execution of the commands. After execution has
completed, the robot returns the resulting data to the user.
Particularly in the case of domains featuring remote, asyn-
chronous communication, such as planetary robotics, the
interaction is essentially “open-loop”: the user cannot com-
municate with the robot while developing plans, and the
robot cannot communicate with the user during execution.

Common ground collaboration model. As an al-
ternative to the current collaboration model, the focus of
the proposed research is to build common ground between
users and robots explicitly. As defined by Herbert Clark
and colleagues, common ground between two participants
in a joint activity is “the knowledge, beliefs, and supposi-
tions they believe they share about the activity” [5, p. 38].
Common ground is required in order for individuals to com-
municate and collaborate successfully [4, 3]. The process
by which common ground is established between individu-
als is referred to as grounding. While we have witnessed the
application of common ground theory to collocated, social



human-robot interaction (Section 1.2), here we examine how
to promote common ground during a remote collaboration
between a human and robot in which both agents possess a
large amount of domain-specific knowledge which does not
necessarily intersect. In this paper, we present the results
of a user study of a system based on the use of a robot
proxy to improve common ground between a user and robot
collaborating on an exploration task.

1.2 Common Ground and HRI

Although the common ground framework was developed
to understand conversation and collaboration among people,
not between people and machines, recent work has extended
the framework into the field of human-computer interaction
[1, 16]. This research suggests that interfaces can be im-
proved by thinking about the user’s experience as a conver-
sation in which shared meaning between the user and the
interface must be developed.

In the field of HRI, Jones and Hinds [12] observed SWAT
teams and used their findings to inform the design of robot
control architectures to coordinate multiple robots. Although
their observations did not include robots, their findings em-
phasize the importance of common ground between a robot
and its user, especially when the two are not collocated.
Kiesler and colleagues [13] describe experiments reporting
more effective communication between people and robots
when common ground is greater. When a robot adapts its
dialog to fit the knowledge of the user, more effective infor-
mation exchange results [20]. Common ground theory has
been applied as a means to drive conversational interactions
between humans and collocated, social robots [17, 15]; our
work focuses on using common ground theory to improve
interactions with a remotely-located partner that does not
engage in natural language conversation.

Situation Awareness. Although generally focused more
on dialog and communication, the common ground frame-
work overlaps with work on situation awareness (SA). End-
sley [9] defines SA as “knowing what is going on around
you.” SA been examined in the HRI domain, particularly
with urban search and rescue (USAR) robots [7, 2, 8, 21].
Empirical work indicates that USAR operators spend sig-
nificantly more time trying to gain SA—assessing the state
of the robot and the environment—than they do navigating
the robot [2, 8]. This work tends to focus on “real time”
interaction (with teleoperated robots), so its applicability is
less clear for HRI with autonomous robots that are remotely
and asynchronously commanded.

Prior Work. Our common ground-based approach to
exploration robotics has been validated by two years of ob-
servations of a remote exploration task, the NASA-funded
Life in the Atacama (LITA) project [18, 19]. We focused
on remote science operations: a science team composed of
biologists, geologists, and instrument specialists (located in
Pittsburgh) used a robot called Zoé to explore the desert and
search for signs of life. The science team produced day-long
command sequences for the robot, and they received and
analyzed data products generated the previous day. An en-
gineering team, composed of roboticists and instrument spe-
cialists (located in Chile), monitored the robot, conducted
troubleshooting on-site, and ensured that the science team
was able to gather data successfully.

Our application of common ground theory to exploration
robotics results from a detailed analysis of the problems
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robotics mission planning process.

which we observed during the LITA mission. These prob-
lems included errors and miscommunications that often
stemmed from a lack of mutual knowledge between the sci-
ence team and the robot, such as information about the
robot’s capabilities and the science team’s underlying goals
[18]. Common ground theory offers us a model for human-
robot interaction based on substantial empirical evidence of
how people collaborate with each other (e.g., [3, 6]).

1.3 The Robot Proxy

In contrast with previous work utilizing common ground
theory to improve social, one-on-one interactions, we con-
sider how to design the interaction between a user and robot
who are not physically co-located and who do not commu-
nicate using natural language dialog. Because of the high
cost of executing plans on a remotely-located robot (as robot
runtime is very expensive), in this paper we introduce the
use of a robot proxy, which allows the user to participate
in the grounding process during plan creation before the
plan is sent to the robot (Figure 1).

As the user inputs a set of actions for the robot, the robot
proxy monitors these actions, simulates their execution, and
asks targeted questions designed to improve common ground
with respect to these actions. For example, if the robot
proxy is simulating the execution of two sequential actions
in the plan and detects that, as a result, two instruments
will target close but non-intersecting areas, the robot proxy
would ask the user whether the instruments were intended
to target the same area and help adjust the plan if need be.
Conventional, conversation-based grounding requires both
people to participate at the same time. A robot proxy-
based system does not require the remotely-located robot
to be available for real-time interactions with the user; in-
stead, the robot proxy provides crucial feedback to the user
and supports transparency without consuming time or re-
sources during plan execution. By engaging in a “conversa-
tion” with the robot proxy, the user has the opportunity to
learn about the robot’s capabilities and provide additional
information to the robot about the user’s goals without the
need to communicate with the physical robot itself. When
the user is satisfied with the plan, the robot proxy delivers
the plan to the robot for execution (Figure 1).

At this time, our robot proxy has the ability to provide
feedback to the user about plans before they are executed;
a more complex proxy which is able to support a richer
conversation with the user is currently under development.
This proxy will actively work to infer the user’s goals and ask
questions about those goals in order to obtain information
above and beyond a simple list of commands (as opposed to
passively illustrating what happens when a list of commands
is executed, as in a normal simulator).

The results of the study presented here serve to demon-
strate how the use of a robot proxy can improve task per-
formance and efficiency, help foster more accurate mental



models of the robot’s capabilities, and create a stronger per-
ception of effectiveness at the task as well as stronger feelings
of collaboration with the robotic system.

2. STUDY DESIGN AND METHOD

In this experiment, we compared a robot proxy-based in-
terface which could provide feedback to users about their
plans for the robot before execution with an interface that
could only pass plans from the user to the robot. We used
a between-subjects design: each participant was randomly
assigned to one of two conditions, the Robot Proxy condi-
tion or the Control condition. No physical robot was used
in the study and all data were simulated.

The goals of the study were to understand the impact
of a robot proxy-based interface on three particular areas
relevant to common ground and exploration robotics tasks:

e Task performance. Which group is more efficient at
completing the task successfully? How many correct
and incorrect plans does each group send to the robot?

e Mental model development. After completing the task,
which group knows more about the robot’s capabilities
and can make accurate predictions about the robot’s
behavior in novel situations?

o Self-evaluation of performance. How does the robot
proxy-based interface affect participants’ perceptions
of their own performance and their feelings of collab-
oration with the system?

It is important to note that within the exploration robotics
domain, particularly planetary exploration, communication
with the robot is often infrequent and costly. In the case of
the Life in the Atacama project, the science team in Pitts-
burgh could only communicate with the robot twice a day:
once to receive data from the robot and once to transmit
a new plan to the robot. Because of this asynchrony, the
amount of time required by the planning process is a less
significant concern than in other human-robot interactions.
To be consistent with this aspect of the exploration robotics
domain, our investigation of task efficiency focuses primarily
on how many communication cycles are required to complete
the task rather than the amount of time spent by the user
to create plans for the robot.

2.1 Participants

Thirty-six participants were recruited from Carnegie Mel-
lon University; eighteen were assigned to each of the two con-
ditions. All participants were graduate students or staff se-
lected for their background in computer science (e.g., mem-
bers of the School of Computer Science). Participants were
compensated for their time upon completion of the study;
they received either refreshments or US$10 cash.

2.2 Procedure

After arriving at the lab, each participant was seated at
a desktop computer. The experimenter explained that the
computer would provide a description of the task and guide
the participant through the task. The computer displayed
the following scenario to each participant: “In this game,
you will work with a Personal Exploration Rover (PER)
which is located at an archeology site. Scattered around the
site are fragments of a stone tablet covered in dirt. Fach
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Figure 2: The side and top-down views of the robot
as presented to study participants.

piece of the tablet contains words which can be combined to
form a message. You must use the robot’s plowing abilities
to scrape the dirt off of the tablet fragments and reconstruct
the message. Once you have examined all of the fragments,
you will be asked what you think the complete message is.”
The participant was then shown a summary of the entire
procedure for playing the game (instructions only relevant
to the Robot Proxy group are shown here in boldface text;
these instructions were not shown to the Control group):

1. The computer will present you with a set of plans for
the fragment.

2. You choose the plan that you want the PER to execute.
It’s multiple choice: you choose one plan from a set of
five plans.

3. Once you have selected a plan, you choose whether
you would like feedback on the plan or whether
you are ready for the robot to execute the plan.

e If you choose to receive feedback, the sys-
tem will analyze your plan and provide you
with additional information about it. You
can then tell the robot to execute the plan,
or you can select a different plan. You may
request feedback no more than two times
before telling the robot to execute a plan.

4. When you command the robot to execute the plan,
it will execute the plan and return a picture. After
it has executed the plan, the PER automatically “re-
sets” (goes back to the location where it was before it
executed the plan).

5. You decide whether to:

e Send another plan to study the current fragment.

e Go back to a previously visited fragment. The
PER can automatically navigate to any fragment



The PER is 25 cm away from Fragment F.
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(a) An example overhead map showing the loca-
tion of the robot and the fragment.

Select a plan:

Plan 1: Plan 4:

Drive 35 cm. Drive 20 cm.
Plow 15 cm. Plow 15 cm.

Drive -10 cm. Drive -15 cm.

Take picture with camera angle 51 degrees. Take picture with camera angle 68 degrees.
Plan 5:

Drive 40 cm.

Plow 20 cm.

Drive -15 cm.

Take picture with camera angle 40 degrees.

Plan 2:

Drive 35 cm.

Plow 20 cm.

Drive 10 cm.

Take picture with camera angle 51 degrees.

Plan 3:

Drive 40 cm.

Plow 20 cm.

Drive -5 cm.

Take picture with camera angle 68 degrees.

(b) An example list of plans.

Figure 3: For each fragment, participants were given
(a) an overhead map and (b) a set of five possible plans.

you have already seen so you can study it again.
However, you may study the same fragment no
more than three times all together.

e Go on to a new fragment. The PER can au-
tonomously navigate to a new fragment so that
you can send a plan to study it.

The participant was also provided with a specific list of
robot commands available to use as well as diagrams depict-
ing the robot’s shape and size, which were available to the
participant throughout the game (Figure 2).

The archeology site contained three fragments. For each
fragment, the participant was given a map indicating the
location of the robot and the nearest fragment as well as a set
of five possible plans the robot could execute (Figure 3). The
participant was asked to choose one of these five plans for the
robot to execute given that only one plan was correct (only
the correct plan would result in a complete picture of the
fragment). Additionally, participants in the Robot Proxy
group had the option of requesting feedback about a possible
plan up to two times per fragment. This feedback consisted
of an image containing a scale drawing of the robot, the
location of the targeted fragment, and the field of view of
one of the robot’s instruments (Figure 4). The feedback was
designed to provide both contextual information about the
robot’s surroundings (the location of the fragment) as well
as to encourage an accurate mental model of the robot’s
capabilities (the field of view of the instrument).

After the participant selected a plan to be executed, he/she
was shown the resulting image and given the opportunity to
review this data. Figure 5 shows the image returned from
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In this plan, the fragment is not covered by the field of
view of the camera. None of the fragment will be
visible in the resulting image.
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Figure 4: An example of the type of feedback shown
to participants in the Robot Proxy group.
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@ Go on to a new fragment.
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Figure 5: A screenshot containing an image of the
first fragment after it has been completely cleaned.

the correct plan for the first fragment. The participant could
send up to three plans for each fragment; however, each time
a participant chose to re-send a plan for a fragment, the
participant was given a new set of five plans from which to
choose. This prevented participants from using a process of
elimination to find correct plans.

Thus, during the activity, each participant completed two
major activities multiple times: selecting a plan for the robot
(planning) and examining the image that was returned from
a selected plan (data review). We refer to a cycle as one
planning session followed by one data review session. Each
participant examined three different fragments for a total of
three trials. After completing all three trials, the partici-
pant was asked a set of questions about his/her experiences.
These questions included self-evaluation questions and ques-
tions intended to evaluate the participant’s mental model of
the robot (Section 2.4). The entire process lasted approxi-
mately thirty to forty-five minutes per participant.

2.3 Simulation

Because the task involved a non-collocated robot, software
could be used to simulate a physical robot without sacrific-
ing the fidelity of the human-robot interaction. Software was



Table 1: Dependent Variables

Variable [ Measure

Task Performance

Accuracy Did the participant successfully
identify the secret message?

# Cycles How many cycles were required in

order for the participant to reveal
the entire secret message?

What proportion of the partic-
ipant’s time spent on the task
was used to review data from the
robot?

Mental Model Development

Quiz Score What percentage of questions
about the robot’s capabilities did
the participant answer correctly?
(14 questions, included both true-
false and multiple-choice ques-
tions)

Self- Evaluation of Performance

Effectiveness To what extent did the participant
agree or disagree that he/she was
efficient at performing the task and
felt confident during the task? (4
questions)

To what extent did the partici-
pant agree or disagree with the
statement, “I had fun playing this
game.”?

To what extent did the participant
agree or disagree with the state-
ment, “When developing plans, I
felt T was collaborating with the
system.”?

Review-Data Ratio

Fun

Collaboration

used to simulate the robot’s actions and the data returned
from the robot. At the end of the experiment, the partici-
pant was informed that he/she had been using a simulated
robot. It is important to note that the simulated robot’s ac-
tions were not stochastic: the robot always executed plans
consistently and perfectly; poor-quality images of fragments
were solely the result of the incorrect plans chosen by par-
ticipants.

2.4 Dependent Variables

Table 1 illustrates the dependent variables measured in
our study. The performance and mental model variables
were derived from the requirements of the task itself. Men-
tal model questions included questions about the robot’s
physical properties as well as questions about how the robot
would perform in situations similar to (yet slightly different
from) those seen during the task. For all six self-evaluation
questions, participants were given a Likert scale from 1 to 5
and asked how strongly they agreed with a particular state-
ment (1 = “Strongly disagree”, 5 = “Strongly agree”). We
used factor analysis to confirm that one question on per-
ceived efficiency and three questions on confidence could be
combined into a coherent factor “Effectiveness”; the Cron-
bach’s alpha of this factor was calculated to be 0.74, which
suggests that the factor is internally consistent. The ques-
tion about the participants’ feelings about collaborating with
the robot was motivated by work by Hinds et al. on human-
robot collaborative tasks [11].
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Figure 7: Mean number of incorrect plans sent to
the robot per trial.

3. RESULTS

Our data analysis focused primarily on understanding dif-
ferences between the Robot Proxy and Control participants
and how participants’ performance changed over the three
trials for the dependent variables given in Table 1. The mul-
tivariate correlations between dependent variables are shown
in Table 2.

3.1 Task Performance

Overall, 30 of 36 participants successfully completed the
task by revealing the entire secret message; a plot of the
mean number of cycles used per trial is shown in Figure
6. To better understand participants’ performance, we con-
ducted a two-way repeated measures analysis of variance
(ANOVA) on the data from the 30 participants who were
successful with condition as a between-subjects variable and
trial number as a within-subjects factor. There was a main
effect for condition (F[1,28] = 37.52, p < .001), indicating
that participants in the Robot Proxy group needed signif-
icantly fewer cycles than those in the Control group. The
main effect of trials was also significant (F'[2,56] = 4.44,p <



Table 2: Multivariate Correlation

# Cycles # Cycles # Cycles

Review-Data

Quiz

Tyinl 1 Tyinl 2 Trial 3 Ratio Seore Effectiveness Fun Collaboration
# Cycles Trial 1 1.000 0.450 0.319 0.352 -0.168 -0.272 0.127 -0.060
# Cycles Trial 2 1.000 0.481 0.499 -0.290 -0.224 0.045 -0.143
# Cycles Trial 3 1.000 0.613 -0.581 -0.274 0.190 -0.270
Review-Data Ratio 1.000 -0.252 -0.259 0.222 -0.204
Quiz Score 1.000 0.355 -0.235 -0.134
Effectiveness 1.000 0.005 0.283
Fun 1.000 0.230
Collaboration 1.000
Statistically significant (p < .05)
.05). This shows that participants required significantly
fewer cycles during the later trials, which indicates that 0.4 w
learning occurred over the trials. There was no significant
interaction effect between condition and trials. 3% 1
We also ran a two-way repeated measures ANOVA on 030k ,
the number of correct plans sent to the robot with condi- e
0.25 LT o .

tion as a between-subjects variable and trial number as a
within-subjects factor. There was a main effect for condition
(F[1,34] = 11.17, p < .01): participants in the Robot Proxy
group sent significantly more correct plans to the robot. 91%
of trials in the Robot Proxy condition resulted in a correct
plan being sent to the robot as opposed to 59% of trials in the
Control condition. There was no significant main effect of
trials; this was the expected result because each trial ended
as soon as one correct plan was sent to the robot. There
was also no significant interaction effect between condition
and trials.

The ANOVA on the number of incorrect plans also showed
a main effect for condition (F[1,34] = 38.4, p < .001), mean-
ing that participants in the Robot Proxy group sent signifi-
cantly fewer incorrect plans to the robot than participants in
the Control group (Figure 7). We also observed a significant
main effect for trials (F'[2,68] = 3.46, p < .05), which in-
dicates that participants sent significantly fewer erroneous
plans to the robot during the later trials, which provides
further evidence of learning. There was no significant inter-
action effect between condition and trials.

In addition, we conducted a two-way repeated measures
ANOVA on the review-data ratio (the proportion of time
spent on data review) with condition as a between-subjects
variable and trial number as a within-subjects factor. The
main effect of condition was highly significant (F'[1,34] =
36.4, p < .001), meaning that participants in the Robot
Proxy group used much less of their time reviewing data
from the robot than did participants in the Control group
(Figure 8). There was no significant main effect of trials nor
a significant interaction effect between condition and trials.
One possible explanation for the main effect of condition is
that participants in the Control group may need more time
to review the data because they must both interpret the
data and use it to improve their mental models. By contrast,
robot proxy users may update their mental models based on
the feedback they receive during the planning process and
so do not need to spend as much time reviewing the data.
This finding is also supported by our correlation analysis,
which indicates that the proportion of time spent reviewing
data was significantly positively correlated with the number
of cycles used in each trial (Table 2).
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data from the robot per trial.

3.2 Mental Model Development

After completing the activity, participants were asked fif-
teen questions related to the robot’s physical structure and
capabilities. One question of the fifteen was not answered
correctly by any participant and was therefore dropped from
the analysis. A plot of the least squares mean score of each
question by condition is shown in Figure 9. We conducted a
multiple analysis of variance on participants’ scores for each
quiz question with condition as a between-subjects variable
and question number as a within-subjects factor. The re-
sults indicated that there was no main effect for condition
(F[1,34] = 2.55, p > .1). We found a significant main ef-
fect for question number (F[12,23] = 15.26, p < 0.001) as
well as a small interaction effect between question score and
condition (F[12,23] = 1.86, p < 0.1). This indicates that,
while there was no significant difference in average total
quiz score between the groups (Mrp = 54%, SDrp = 15%,
Mcontrot = 45%, SDcontror = 18%), whether or not a par-
ticipant answered a particular question correctly was related
to his/her group membership. This result is also reflected
in Figure 9: while the average difficulty of questions varied,
members of the Robot Proxy group tended to score higher
on most questions.

We also observed a negative correlation between total quiz
score and the number of cycles required for each trial; the
magnitude of the correlation increased over time (Table 2).
This suggests that participants who scored higher on the
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quiz needed fewer cycles to complete the task. This provides
evidence that a higher score on the mental model quiz was
associated with better performance on the task.

3.3 Self-Evaluation of Performance

Regression analysis was used to ascertain if the presence of
the robot proxy could explain the differences in participants’
self-evaluation of their performance on the task. The regres-
sion of efficiency on condition was significant (Mgrp = 3.82,
Mcontror = 3.08, > = 0.19, p < .01) (Figure 10). The
regression of collaboration on condition was also significant
(Mrp = 3.0, Moontra = 2.28, 7> = 0.11,p < .05) (Fig-
ure 11). There was no significant difference with respect to
participants’ ratings of the task as fun. This shows that
participants’ ratings of their own effectiveness and feelings
of collaboration with the system were strongly impacted by
their interaction with a robot proxy.

4. DISCUSSION

Our participants were representative of the highly-trained
scientists who currently participate in robotics exploration
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missions due to participants’ strong mathematics back-
grounds and lack of direct experience remotely controlling
robots for scientific exploration. The task was fairly short
and straightforward: there were only three trials, and most
participants successfully determined the secret message.
While our results indicated that participants did learn over
the course of the three trials, we found that the Robot
Proxy group performed significantly better than the Control
group on the first trial, a strong example of one-trial learn-
ing. With a longer, more complex task, we would expect
to see more differences between the two groups in terms of
learning, performance, and mental model development; this
could be verified in a future experiment. We would also ex-
pect more significant differences between the groups based
on the type of the feedback provided; different forms of feed-
back (i.e. three-dimensional images, video, etc.) could be
compared in future studies. However, the basic feedback
used in this study was still sufficient to highlight the bene-
fits of a robot proxy, and we plan to conduct further studies
when our full proxy implementation is complete.

Through this study, we have demonstrated proof-of-concept
for using a robot proxy to increase common ground between
a user and a remotely located robot as they complete an
exploration task. Users who could request feedback about
their plans before those plans were sent to the robot were
more accurate (sent many fewer incorrect plans) and more
efficient (required fewer cycles in order to successfully com-
plete the task). Robot proxy users were also able to develop
a better mental model of the robot, which was correlated
with improved efficiency. The use of the robot proxy also
explains participants’ stronger feelings of effectiveness at the
task and collaboration with the system, the benefits of which
have been shown in [11]. In addition, we found that that in-
dividuals who completed the task in fewer cycles also spent
less time reviewing data from the robot relative to their total
amount of time spent on the task. Experiments involving a
greater number of trials are needed, but we hypothesize that
this review-data ratio could be used as a real-time, quanti-
tative estimate of the common ground between a robot and
user.

Future challenges include reformulating the task to be
longer and more challenging. We are also interested in com-



paring the results of the study when a real robot is used (as
opposed to a simulated robot). In previous work, we have
documented the significance of problems stemming from a
lack of common ground due to errors or failures when a
real robot executes a plan [18, 19]. Based on these results,
we are interested in creating a system on-board the robot
which uses the information gained by the robot proxy to
help the robot make better decisions in the event of fail-
ures at execution time. We are also currently analyzing how
robot-proxy grounding could apply to other domains based
on Clark and Brennan’s analysis of grounding constraints
[6]. We expect that the use of a real robot and more chal-
lenging task would reveal further significant differences in
task performance and mental model accuracy between par-
ticipants who use a robot proxy during planning and those
who do not.
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